请输入关键字:

热门搜寻:

IOSG:Web3+AI下一个爆发点在哪?

日期:2024年7月30日 下午2:00

作者:IOSG Ventures

感谢来自 Zhenyang@Upshot, Fran@Giza, Ashely@Neuronets, Matt@Valence, Dylan@Pond 的反馈。

本研究旨在探讨对开发者而言哪些人工智能领域最为重要,以及在 Web3 和人工智能领域哪些可能是爆发的下一个机遇。

在分享新的研究观点之前,首先很高兴我们参与了RedPill总计 500 万美元的第一轮融资,也非常激动,期待接下来能够和RedPill共同成长!

IOSG:Web3+AI下一个爆发点在哪?

TL;DR

随着 Web3 与 AI 的结合成为加密货币界的瞩目话题,加密世界的 AI 基础设施构建兴旺起来,但实际利用 AI 或为 AI 构建的应用程序并不多,AI 基础设施的同质化问题逐渐显现。近期我们参与的 RedPill 的第一轮融资,引发了一些更深入的理解。

  • 构建 AI Dapp 的主要工具包括去中心化 OpenAI 访问、GPU 网络、推理网络和代理网络。
  • 之所以说 GPU 网络比「比特币挖矿时期」还要热门,是因为:AI 市场更大,并且增长快速且稳定;AI 每天支持数以百万计的应用程序;AI 需要多样化的 GPU 型号和服务器位置;技术比过往更成熟;面向的客户群也更广。
  • 推理网络和代理网络有相似的基础设施,但关注点不同。推理网络主要供有经验的开发者部署自己的模型,而运行非 LLM 模型并不一定需要 GPU。代理网络则更专注于 LLM,开发者无需自带模型,而是更注重提示工程和如何将不同的代理联结起来。代理网络总是需要高性能的 GPU。
  • AI 基础设施项目承诺巨大,仍在不断推出新功能。
  • 多数原生加密项目仍处于测试网阶段,稳定性差,配置复杂,功能受限,还需要时间来证明其安全性和隐私性。
  • 假设 AI Dapp 成为大趋势,还有许多未开发的领域,如监控、与 RAG 相关的基础设施、Web3 原生模型、内置加密原生 API 和数据的去中心化代理、评估网络等。
  • 垂直整合是一个显着趋势。基础设施项目试图提供一站式服务,简化 AI Dapp 开发者的工作。
  • 未来将是混合型的。部分推理在前端进行,而部分在链上计算,这样做可以考虑到成本和可验证性因素。

IOSG:Web3+AI下一个爆发点在哪?

Source:IOSG

引言

  • Web3 与 AI 的结合是当前加密领域中最受瞩目的话题之一。才华横溢的开发者正在为加密世界构建 AI 基础设施,致力于将智能带入智能合约。构建 AI dApp 是极其复杂的任务,开发者需要处理的范围包括数据、模型、计算力、操作、部署和与区块链的整合。针对这些需求,Web3 创始人已经开发出许多初步的解决方案,如 GPU 网络、社区数据标注、社区训练的模型、可验证的 AI 推理与训练以及代理商店。
  • 而在这兴旺的基础设施背景下,实际利用 AI 或为 AI 构建的应用程序并不多。开发者在查找 AI dApp 开发教程时,发现这些与原生加密 AI 基础设施相关的教程并不多,大多数教程仅涉及在前端调用 OpenAI API。

IOSG:Web3+AI下一个爆发点在哪?

Source:IOSGVentures
  • 当前的应用未能充分发挥区块链的去中心化和可验证功能,但这种状况很快将会改变。现在,大多数专注于加密领域的人工智能基础设施已经启动了测试网络,并计划在未来 6 个月内正式运行。
  • 本研究将详细介绍加密领域人工智能基础设施中可用的主要工具。让我们准备迎接加密世界的 GPT-3.5 时刻吧!

1. RedPill:为 OpenAI 提供去中心化授权

前文所提到的我们参投的 RedPill 是一个很好的引入点。

OpenAI 拥有几种世界级强大的模型,如 GPT-4-vision、GPT-4-turbo 和 GPT-4o,是构建先进人工智能 Dapp 的优选。

开发者可以通过预言机或前端接口调用 OpenAI API 以将其集成到 dApp 中。

RedPill 将不同开发者的 OpenAI API 整合在一个接口下,为全球用户提供快速、经济且可验证的人工智能服务,从而实现了对顶尖人工智能模型资源的民主化。RedPill 的路由算法会将开发者的请求定向到单一贡献者处。API 请求将通过其分发网络执行,从而绕过任何来自 OpenAI 的可能限制,解决了加密开发者面临的一些常见问题,如:

  • 限制 TPM(每分钟代币):新账户对代币的使用有限,无法满足热门且依赖 AI 的 dApp 的需求。
  • 访问限制:一些模型对新账户或某些国家的访问设置了限制。

通过使用相同的请求代码但更换主机名,开发者能以低廉的成本、高扩展性和无限制的方式访问 OpenAI 模型。

IOSG:Web3+AI下一个爆发点在哪?

IOSG:Web3+AI下一个爆发点在哪?

2. GPU 网络

除了使用 OpenAI 的 API,许多开发人员还会选择自行在家中托管模型。他们可以依托去中心化 GPU 网络,如 io.net、Aethir、Akash 等流行的网络,自行建立 GPU 集群并部署及运行各种强大的内部或开源模型。

这样的去中心化 GPU 网络,能够借助个人或小型数据中心的计算力,提供灵活的配置、更多的服务器位置选择以及更低的成本,让开发人员可以在有限的预算内轻松进行 AI 相关的试验。然而,由于去中心化的性质,此类 GPU 网络在功能性、可用性和数据隐私方面还存在一定的局限。

IOSG:Web3+AI下一个爆发点在哪?

过去几个月,GPU 的需求火爆,超过了之前的比特币挖矿热潮。此现象的原因包括:

  • 目标客户增多,GPU 网络现在服务于 AI 开发者,他们的数量不仅庞大而且更为忠实,不会受到加密货币价格波动的影响。
  • 相比挖矿专用设备,去中心化 GPU 提供了更多的型号和规格,更能满趡 iez 要求。尤其是大型模型处理需要更高的 VRAM,而小型任务则有更适合的 GPU 可选。同时,去中心化 GPU 能够近距离服务终端用户,降低延迟。
  • 技术日趋成熟,GPU 网络依赖高速区块链如 Solana 结算、Docker 虚拟化技术和 Ray 计算集群等。
  • 在投资回报方面,AI 市场正在扩张,新应用和模型的开发机会多,H100 模型的预期回报率为 60-70%,而比特币挖矿则更为复杂,赢家通吃,产量有限。
  • 比特币挖矿企业如 Iris Energy、Core Scientific 和 Bitdeer 也开始支持 GPU 网络,提供 AI 服务,并积极购买专为 AI 设计的 GPU,如 H100。

推荐:对于不太重视 SLA 的 Web2 开发者,io.net 提供了简洁易用的体验,是个性价比很高的选择。

3. 推理网络

这是加密原生 AI 基础设施的核心。它将在未来支持数十亿次 AI 推理操作。许多 AI layer1 或 layer2 为开发者提供了在链上原生调用 AI 推理的能力。市场领导者包括 Ritual、Valence 和 Fetch.ai。

这些网络在以下方面存在差异:

  1. 性能(延迟、计算时间)
  2. 支持的模型
  3. 可验证性
  4. 价格(链上消耗成本、推理成本)
  5. 开发体验

3.1 目标

理想的情况是,开发者可以在任何地方,通过任何形式的证明,轻松地访问自定义的 AI 推理服务,整合过程中几乎没有任何阻碍。

推理网络提供了开发者所需的全部基础支持,包括按需生成和验证证明、进行推理计算、推理数据的中继和验证、提供 Web2 和 Web3 的接口、一键式模型部署、系统监测、跨链操作、同步集成及定时执行等功能。

IOSG:Web3+AI下一个爆发点在哪?

 

Source:IOSGVentures

借助这些功能,开发者可以将推理服务无缝集成到他们现有的智能合约中。例如,在构建 DeFi 交易机器人时,这些机器人会利用机器学习模型寻找特定交易对的买卖时机,并在基础交易平台上执行相应的交易策略。

在完全理想的状态下,所有的基础结构都是云托管的。开发者只需将他们的交易策略模型以通用格式如 torch 上传,推理网络就会存储并为 Web2 和 Web3 查询提供模型。

所有模型部署步骤完成后,开发者可以直接通过 Web3 API 或智能合约调用模型推理。推理网络将持续执行这些交易策略,并将结果反馈给基础智能合约。如果开发者管理的社区资金量很大,还需要提供推理结果的验证。一旦收到推理结果,智能合约就会根据这些结果进行交易。

IOSG:Web3+AI下一个爆发点在哪?

Source:IOSGVentures

3.1.1异步与同步

从理论上讲,异步执行的推理操作可以带来更好的性能表现;然而,这种方式在开发体验上可能让人感到不便。

在采用异步方式时,开发者需要先将任务提交到推理网络的智在合约中。当推理任务完成后,推理网络的智能合约会将结果返回。在这种编程模式下,逻辑被分为推理调用和推理结果处理两个部分。

IOSG:Web3+AI下一个爆发点在哪?

Source:IOSGVentures

如果开发者有嵌套的推理调用和大量的控制逻辑,情况会变得更糟。

IOSG:Web3+AI下一个爆发点在哪?

Source:IOSGVentures

异步编程模式使得它难以与现有的智能合约集成。这需要开发者编写大量额外的代码,并进行错误处理和管理依赖关系。

相对地,同步编程对于开发者来说更加直观,但它在响应时间和区块链设计上引入了问题。例如,如果输入数据是区块时间或者价格这种快速变动的数据,那么在推理完成后数据已不再新鲜,这可能会导致在特定情况下智能合约的执行需要回滚。想象一下,你用一个过时的价格来做交易。

IOSG:Web3+AI下一个爆发点在哪?

Source:IOSGVentures

大部分 AI 基础架构采用异步处理,但 Valence 正在尝试解决这些问题。

3.2现实情况

实际上,许多新的推理网络还在测试阶段,如 Ritual 网络。根据他们的公开文件,这些网络目前的功能较为有限(诸如验证、证明等功能还未上线)。他们目前没有提供一个云基础设施以支持链上 AI 计算,而是提供了一个框架,用于自我托管 AI 计算并将结果传递至链上。

这是一个运行 AIGC NFT 的体系结构。扩散模型生成 NFT 并上传至 Arweave。推理网络会用这个 Arweave 地址在链上铸造该 NFT。

IOSG:Web3+AI下一个爆发点在哪?

Source:IOSGVentures

这个过程非常复杂,开发者需要自己部署和维护大多数基础设施,如配有定制服务逻辑的 Ritual 节点、Stable Diffusion 节点及 NFT 智能合约。

推荐:目前的推理网络在整合和部署自定义模型方面相当复杂,且在这一阶段大多数网络还不支持验证功能。将 AI 技术应用到前端会为开发者提供一个相对简单的选择。如果你非常需要验证功能,ZKML 提供商 Giza 是个不错的选择。

4. 代理网络

代理网络让用户能轻松自定义代理。这样的网络由能自主执行任务、相互交云以及与区块链网络交互的实体或智能合约组成,这一切无需人工直接干预。它主要针对 LLM 技术。例如,它可以提供一个深入了解以太坊的 GPT 聊天机器人。这种聊天机器人目前的工具较为有限,开发者还不能在此基础上开发复杂的应用。

IOSG:Web3+AI下一个爆发点在哪?

Source:IOSGVentures

但是将来,代理网络将提供更多的工具给代理使用,不仅仅是知识,还包括调用外部 API、执行特定任务的能力等。开发者将能够将多个代理连接起来构建工作流。例如,编写 Solidity 智能合约会涉及多个专门的代理,包括协议设计代理、Solidity 开发代理、代码安全审查代理以及 Solidity 部署代理。

IOSG:Web3+AI下一个爆发点在哪?

Source:IOSGVentures

我们通过使用提示和场景来协调这些代理的合作。

一些代理网络的例子包括 Flock.ai、Myshell、Theoriq。

推荐:当今大部分代理的功能都相对有限。对于特定用例,Web2 代理能够更好的服务,并且拥有成熟的编排工具,例如 Langchain、Llamaindex。

5.代理网络与推理网络的差异

代理网络更侧重于 LLM,提供了如 Langchain 这样的工具来整合多个代理。通常情况下,开发者无需亲自开发机器学习模型,代理网络已经将模型开发和部署的过程简化。他们只需要链接必要的代理和工具即可。大多数情况下,最终用户将直接使用这些代理。

推理网络则是代理网络的基础设施支撑。它提供给开发者较低层次的接入权限。正常情况下,终端用户不直接使用推理网络。开发者需要部署自己的模型,这不仅限于 LLM,并且他们可以通过链下或链上接入点使用它们。

代理网络和推理网络并非完全独立的产品。我们已经开始看到一些竖向整合的产品。他们因为这两种功能依赖相似的基础设施,所以同时提供代理和推理能力。

IOSG:Web3+AI下一个爆发点在哪?

6.新的机会之地

除了模型推理、训练和代理网络外,web3 领域还有很多值得探索的新领域:

  • 数据集:如何将区块链数据转变为机器学习可用的数据集?机器学习开发者需要的是更为具体和专题化的数据。例如,Giza 提供了一些高品质的、关于 DeFi 的数据集,专门用于机器学习训练。理想的数据应不仅仅是简单的表格数据,还应该包括能够描述区块链世界交互的图形数据。目前,我们在这方面还有不足。目前有些项目正通过奖励个人创建新数据集来解决这一问题,比如 Bagel 和 Sahara,它们承诺保护个人数据的隐私。
  • 模型存储:一些模型体积庞大,如何存储、分发及版本控制这些模型是关键,这关系到链上机器学习的性能和成本。在这一领域,Filecoin, AR 和 0g 等先锋性项目已经取得了进展。
  • 模型训练:分布式且可验的模型训练是个难题。Gensyn, Bittensor, Flock 和 Allora 等已有显着进展。
  • 监控:由于模型推理在链上与链下都有发生,我们需要新的基础设施来帮助 web3 开发者追踪模型的使用状况,及时发现可能存在的问题和偏差。有了合适的监控工具,web3 的机器学习开发者可以及时调整,不断优化模型精确度。
  • RAG 基础设施:分布式 RAG 需要全新的基础设施环境,对存储、嵌入计算和向量数据库有较高的需求,同时要确保数据的隐私安全。这与目前的 Web3 AI 基础设施大不相同,后者大多依赖第叁方来完成 RAG,例如 Firstbatch 和 Bagel。
  • 专为 Web3 定制的模型:并不是所有模型都适合 Web3 情景。大多数情况下,需要对模型进行重新训练,以适应价格预测、推荐等具体应用。随着 AI 基础设施的繁荣发展,未来我们期望有更多 web3 本地模型来服务于 AI 应用。比如 Pond 正在开发区块链 GNN,用于价格预测、推荐、欺诈侦测和反洗钱等多种场景。
  • 评估网络:在缺乏人类反馈的情况下评估代理是不容易的。随着代理创建工具的普及,市场上将会出现无数的代理。这就需要有一个系统来展示这些代理的能力,并帮助用户判断在特定情况下哪个代理的表现最佳。例如,Neuronets 是这个领域的一个参与者。
  • 共识机制:对于 AI 任务,PoS 不一定是最佳选择。计算复杂性、验证的困难和确定性的缺失是 PoS 面临的主要挑战。Bittensor 创造了一种新的智慧型共识机制,奖励网络中为机器学习模型和输出做出贡献的节点。

7.未来展望

我们目前观察到了垂直整合的发展趋势。通过构建一个基础的计算层,网络能够为多种机器学习任务提供支持,包括训练、推理及代理网络服务。这种模式意在为 Web3 的机器学习开发者们提供全方位的一站式解决方案。

目前,链上推理尽管成本高昂且速度较慢,但它提供了出色的可验证性及与后端系统(例如智能合约)的无缝集成。我认为未来将走向混合应用的道路。一部分推理处理将在前端或链下进行,而那些关键的、决策性的推理则会在链上完成。这种模式已经在移动设备上得到了应用。通过利用移动设备的本质特点,它能够在本地快速运行小型模型,并将更复杂的任务迁移到云端,利用较大的 LLM 处理。

内容来源:PANews

财华网所刊载内容之知识产权为财华网及相关权利人专属所有或持有。未经许可,禁止进行转载、摘编、复制及建立镜像等任何使用。

如有意愿转载,请发邮件至content@finet.com.hk,获得书面确认及授权后,方可转载。

更多精彩内容,请登陆
财华香港网(https://www.finet.hk/)
财华智库网(https://www.finet.com.cn)

现代电视(http://www.fintv.hk)

相關文章

7月30日
Vitalik发文庆祝以太坊的9岁生日,并将于下午发表“以太坊的未来10年”主旨演讲
7月30日
美国SEC正寻求修改对Binance的投诉,不再试图证明包括Solana在内的代币为证券
7月30日
TG BOT赛道观察:爆火一年后,“现金奶牛”们如何卷起来了?
7月30日
从极客到政客,比特币大会正在逐渐政治化
7月30日
Solana首次在每周费用收入上超越以太坊
7月30日
冲上7万顷刻下跌,美国政府转移20亿美元BTC惹的祸?
7月30日
DEX月交易量达到CEX的14.22%,市场份额创历史新高
7月30日
预测市场Polymarket在Substack上推出新闻网站The Oracle
7月30日
Cycle Capital: 一周链上数据跟踪(20240729)
7月30日
FTX.com的客户需在8月17日前在“巴哈马索赔程序”和“美国索赔程序”中做出选择

视频

快讯

17:31
时代中国控股(01233.HK)清盘呈请聆讯延期至5月19日
17:30
【盈喜】中集集团(02039.HK)料年度母公司股东及其他权益持有者净利润同比增长493%至731%
17:25
国富创新(00290.HK)成立量子创新战略委员会
17:25
【盈喜】中国财险(02328.HK)料2024年净利润同比增加约20%-40%
17:15
【盈喜】天虹国际集团(02678.HK)料2024年度扭亏为盈纯利5.8亿元
16:53
【盈喜】中国人民保险集团(01339.HK)料2024年归母净利润同比增长75%-95%
16:50
中国动向(03818.HK)第三季度Kappa品牌店舖零售流水按年录得中单位数下降
16:45
迪信通(06188.HK):刘亮获任执行总裁
16:35
【盈喜】恒投证券(01476.HK)料年度股东应占溢利增至1.71亿元
16:27
小米汽车回应召回事件:将通过OTA为召回范围内的车辆升级